

© Agiloft, 2018

End User Interface
Tips and Reference Guide

Last Updated: June 18, 2018

www.agiloft.com/documentation/eui-reference-guide.pdf

https://www.agiloft.com/documentation/eui-reference-guide.pdf

© Agiloft, 2018

Contents
Introduction .. 3

End User Interface Overview.. 3

About This Guide ... 4

Default Configuration .. 4

main.php ... 4

home.htm .. 4

menu.htm .. 5

translation.properties .. 5

style.css and others.. 6

Tips & Tricks .. 6

Single Sign-on (SSO) ... 6

Chat ... 6

Dropdown Menus .. 9

Pre-populating Records.. 11

Macros Reference ... 15

Additional Tools... 24

Visualization Parameters ($params) ... 24

User related tools .. 24

Response related tools... 28

Localization related tools ... 28

© Agiloft, 2018 3

Introduction

End User Interface Overview
With Agiloft, there are multiple ways to provide your different groups of end users with their own
completely distinct interface. The customizable End User Interface makes it possible to completely
reconstruct the screen layouts, provide your own style of toolbar, vary the options on the main page,
plus add your own fonts, color schemes, logos and buttons. Each group can have its own interface with a
different home page/starting point and different navigational options. Once these interfaces have been
created you simply supply each group with the URL to their particular interface.

New installations of the default knowledgebase include the following example of a default portal:

The cost of this flexibility is that you must effectively build your own web pages that will hold the Agiloft
screens, such as table views, record forms, etc. This customization is done using a programming
language, but this is kept as easy as possible. The administrator or web developer creates pages in
HTML, DHTML, JavaScript etc. using their preferred editor and, using Apache’s Velocity template engine,
inserts macros where Agiloft should insert dynamic elements like tables, status messages, and records
to open for editing.

© Agiloft, 2018 4

About This Guide
The following pages assume familiarity with the Agiloft application and user interface. This particular
tutorial focuses on marcros and configuration but assumes the user portal has already been set up. For
further instruction regarding portal creation, refer to our EUI Portal Tutorial documentation. Some basic
HTML knowledge is useful, but not absolutely necessary. Included is an explanation of some of the
default configuration and the special Agiloft macros.

Default Configuration
This section details some of the important components of the default EUI configuration. The pages that
will be discussed are:

translation.properties and the $ewText.get() macro

meta.htm, style.css, and style-ie.css

main.php
The standard login pages provided by Agiloft are set to direct a user to main.php when logging into the
custom portal.

The default configuration of main.php sets the browser title and acts as a wrapper to pull in additional
templates home.htm, header.htm, and footer.htm.

The page title is determined using #if macros and the special Agiloft macros $ewUser.isInGroup()
and $ewText.get(). This is a good page to look at how these macros behave as the rest of the page is
rather simple.

Note: While a login page does have to specify which EUI2 page a user will be taken to, it does not have
to be the main.php page. Different login pages for the same project could even direct users to different
landing pages.

home.htm
The home.htm page is the bulk of what users first see when logging in. This page makes heavy use of the
conditional #if macros to show different options to different user groups when they log in.

The main part of the page uses a table to line up the columns and rows. The horizontal and vertical
dotted lines are table cells with particular CSS classes designated.

Using this type of layout and conditionals gives you a relatively compact presentation when there are
only a few options for each user.

main.php

home.htm

menu.htm

https://www.agiloft.com/documentation/eui-portal-tutorial.pdf

© Agiloft, 2018 5

You do not have to use home.htm if you do not want. You can remove the #ew_include(“home.htm”)
line from main.php or replace the reference to ‘home.htm’ with a different page that you create and
store in EUI Templates.

menu.htm
The menu.htm page provides the tabs across the top of the screen. The tabs are members of an
unordered list.

The script at the top of the page is to highlight the current tab. To use this area if you add any extra tabs,
make sure each new list item is given a unique ID.

The area used by the tabs will expand to accommodate any extra tabs added. If the area used by the
tabs becomes larger than the area available to the menu it will create a second line, which generally
looks bad. For this reason, it is advisable to use shorter tab names or add line breaks into the tab names
to show each user a limited number of tabs, or you can create dropdown menus for the extra items.

To create dropdown menus, see the Tips & Tricks section.

translation.properties
Translation.properties is actually a family of pages. The default Agiloft setup includes the EUI
Templates ‘translation.properties’, ‘translation_ru.properties’, and
‘translation_zh.properties’. These records hold the text retrieved by the $ewText.get() macro for
English, Russian, and Chinese, respectively.

The Agiloft system associates a locale with each user session. This locale sets the language used by the
wizards, tables, and fields. To support translations of HTML page text, the $ewText.get() macro was
developed. This macro checks the session locale and uses that to determine which
translation.properties file to use.

The locale is usually set from the user’s record or from the login page. You can allow users to switch the
locale once logged in by using the #ew_locale() macro, and possibly the #ew_languages_all()
macro, to display language options to the user.

The file called ‘translation.properties’ is the default file when a locale is not set. This is normally in
English. Other files should be named translation_XX.properties where XX is a proper Java locale
code. A list of supported Java locale codes can be found at:
http://www.roseindia.net/tutorials/i18n/locales-list.shtml.

Each row of the translation.properties file consists of a key, followed by =, followed by the text to
display.

Example: home.hc.my.link=My Cases

The key is what the $ewText.get() macro looks for. In the example above,
$ewText.Get(home.hc.my.link) would return “My Cases”. You may use any keys that you want.

Note: After altering any of the translation.properties files, the server cache must be cleared before
the new text is made available. For hosted customers, please contact our support services if you need
your server cache cleared. Purchased customers may clear their server cache through the Cache tab of
the server admin console.

http://www.roseindia.net/tutorials/i18n/locales-list.shtml

© Agiloft, 2018 6

style.css and others
The default pages make use of a meta.htm page. This meta.htm page calls the standard scripts and CSS
that are used rather than repeating them on each page.

The actual CSS files are ‘style-ie.css’ (for Internet Explorer specific styles) and ‘style.css’.

Style.css uses standard CSS and may be updated as you need.

Keep in mind that by default the <divs> on the home.htm page have their location determined by the
HTML table and do not use relative positioning. If you update the CSS files to assign positioning to the
<divs>, then the HTML table on home.htm should be removed.

Tips & Tricks

Single Sign-on (SSO)
If your users are using SSO, the system will tell the admin what URL to use. This base URL will take end
users to the Legacy EUI. To make sure the end users are directed to your customized Portal, add:
“&euiURL=/eui2template/main.php” to the end of the SSO link. If main.php is not your main entry
page, change the reference accordingly.

The completed link will look like:
https://qa01.enterprisewizard.com/gui2/sso.jsp?autoLogin=true&project=Demo_02a&State=Main&eui
URL=/eui2template/main.php

For Google SSO, the link would look like:
https://qa01.enterprisewizard.com/gui2/sso?project=Demo_02a&State=Main&euiURL=/eui2template/
main.php

Chat
Launch a chat session from the custom portal with the #ew_chat() macro. See the Macros Reference
section for how this macro is used. The macro only creates the URL to launch the chat session; it must
also be added to a button or menu item to show to the users.

There is no one right way to do this; it all depends on the specific needs of the client. You may want to
make multiple types of chats available to different types of users based on the user’s group
membership, or you may need just a simple chat button to show up for just one user group, such as
those in the Customer group.

In the section below, we will walk through an example setup to provide a Sales chat button to users in
the Customer group. After building out the simpler example we will discuss leveraging that sample code
to create a more complex setup.

https://qa01.enterprisewizard.com/gui2/sso?project=Demo_02a&State=Main&euiURL=/eui2template/main.php
https://qa01.enterprisewizard.com/gui2/sso?project=Demo_02a&State=Main&euiURL=/eui2template/main.php

© Agiloft, 2018 7

Example Sales Chat Setup
In this example, we will simply add a tab to the EUI called Chat. This is done by editing the menu.htm
record in the EUI Templates table. About halfway down in the body of that record you will find a stub of
code that is commented out that would create a tab called “Chat” in the EUI. See the line below.

If you were to remove the comment enclosure (<!-- and -->) to make it live, it would not work because
there is not an EUI Template defined called “chat.htm”. Creating that EUI template would then make
this line of code work. For now, however you can add a chat tab to the EUI by replacing it with the
following code:

<script type="text/javascript">

// Popup window code

function newPopup(url) {

 popupWindow =

window.open(url,'popUpWindow','height=500,width=500,left=10

,top=10,resizable=yes,scrollbars=yes,toolbar=no,menubar=no,location=no,direct

ories=no,status=no')

}

</script>

#if ($ewUser.isInGroup("Customer"))

 <li id="chat"><a

href="JavaScript:newPopup('#ew_chat("46326e7a79564f5a3271376f4257786b5945344e

46413d3d")')">$ewText.get("menu.chat")

#end

The first section until </script> is a commodity piece of Javascript that is defined for later use in the
link definition below it. It allows you to open a new window as a small popup rather than as a full-
fledged window, a function HTML by itself does not have. The “Javascript:new-Popup . . .)” is
where it appears in the actual link definition as it “wraps” the code you would otherwise use if you did
not want it as a popup window. The '#ew_chat("46326e7 . . .")' is the Agiloft-defined “Velocity” Macro.

The long parameter provided, "46326e7 . . .", is the $sessionHash, a unique number obtained from
the HTML tab when editing the Chat record that you define in Setup > Chat. If you do not see the HTML
tab, it is because you need to select the “Web page outside the program” option in the General tab, and
then click Next to make the tab appear. You can cut and paste the number from that HTML Tab into
your code above. The final piece, $ewText.get("menu.chat"), provides the name of the tab (in this
case, Chat) from the localization record that provides the names of all elements in the language that you
chose when setting up your knowledgebase. This is discussed in the EUI tutorial as well.

The #if ($ewUser.isInGroup("Customer")) . . . #end section simply prevents showing the link to
anyone that is not in the Customer group.

When you save this EUI template record and log in as Customer/Customer or as anyone in the Customer
group, you will see the new Chat tab. And you are done.

<!--<li id="chat">$ewText.get("menu.chat")-->

© Agiloft, 2018 8

More Elaborate Chat configuration
As mentioned above, if need to have more types of chats available, rather than provide a separate tab
for each, such as Sales Chat, Support Chat, etc., use the out-of-the-box code from Menu.htm, which is
repeated below with the comments removed.

<li id="chat">$ewText.get("menu.chat")

It refers to the chat.html page you would want to first set up to show multiple chat options, which can
be hidden using the #if…#end Velocity macro options used in the example we already defined. For
instance, one might have internal “customers” who might want to chat with Support Staff or with HR
staff—two different chat functions. In that case, one would set up a separate HTML page as an EUI
Template record and would call that record chat.html and design it as desired. A quick way is to do the
following:

1) Copy the body of the newsupport_case.htm EUI Template into your HTML.
2) Edit the <title> from $ewText.get("newsc.title") to $ewText.get("menu.chat").
3) Edit the <h2> from $ewText.get("newsc.header") to “Available Chat Teams,” which bypasses

the localization/language feature of the $ewText.get() but keeps this explanation short.
4) Replace the <div id="main_frame"> contents with your new code—example below:

 <script type="text/javascript">

 // Popup window code

 function newPopup(url) {

 popupWindow =

window.open(url,'popUpWindow','height=500,width=500,left=10,top=10,resizable=

yes,scrollbars=yes,toolbar=no,menubar=no,location=no,directories=no,status=no

')

 }

 </script>

 #if ($ewUser.isInGroup("Customer"))

 <li id="Supportchat"><a

href="JavaScript:newPopup('#ew_chat("46326e7a79564f5a3271376f4257786b5945344e

46413d3d")')">Chat With Support

 <li id="Saleschat"><a

href="JavaScript:newPopup('#ew_chat("4e773175324f65514f64376674436a546c476e36

6f413d3d")')">Chat With a Sales Rep

 #end

 #if ($ewUser.isInGroup("Guest"))

 <li id="Saleschat"><a

href="JavaScript:newPopup('#ew_chat("4e773175324f65514f64376674436a546c476e36

6f413d3d")')">Chat With a Sales Rep

 #end

© Agiloft, 2018 9

This will offer two different chat sessions to those in the Customer group and only the Sales Chat option
to the Guest group. It requires that you have set up a second Chat definition in Setup > Chat and have
copied the $sessionHash number in the #ew_chat() macro from the appropriate Chat definition.

You can log into Customer/Customer and test it while also logged in as one of the staff users on teams
set up to receive these requests (per one or both of the two chat definition records).

Dropdown Menus
This section is about how to create dropdown menus. This uses only standard JavaScript, not Agiloft
macros. It is provided to help those with more menu options to deal with the default Agiloft menu
structure.

Edit the menu.htm record in the EUI Templates table. Add the following to the JavaScript section:

jQuery(document).ready(function($){

 $("li.submenu").hover(

 function(){

 $('ul', this).css('visibility','visible');

 $('ul', this).css('position', 'absolute');

 },

 function(){

 $('ul', this).css('visibility','hidden');

 }

);

 $("li.submenu ul li").hover(

 function(){

 $(this).css('background','#5F76A3');

 $('a', this).css('color', 'white');

 },

 function(){

 $(this).css('background','white');

 $('a', this).css('color', '#07315b');

 }

)

})

This code lets the submenus be revealed upon mouse-over.This code and the CSS below require that the
menu items that have a dropdown menu be in a list item with an ID of “submenu”. The example below
is one of the list items from a menu. Notice that it contains a separate list which is the dropdown items.

© Agiloft, 2018 10

 <li id="submit" class="submenu">New

Ticket

 New Equipment

Repair

 New System

Issue

#if ($ewUser.isInGroup("Vendor") || $ewUser.isInGroup("admin"))

 New Maintenance

Request

#end

To set the appearance of the dropdown menus, edit the style.css file and add the following or
something similar:

#menu li.submenu ul {

 visibility: hidden;

 list-style: none;

 margin: 0;

 padding: 0;

 position: absolute;

 border: 1px solid #5F76A3;

 border-top: none;

 z-index: 598;

 margin-top: -19px !important;

 margin-left: -19px !important;

}

#menu li.submenu:hover > ul {

 visibility: visible;

}

#menu li.submenu:hover {

 position: relative;

 z-index: 599;

 cursor: default;

}

#menu li.submenu ul li, #menu li.submenu ul li a {

 padding: 0;

© Agiloft, 2018 11

 margin: 0;

 background: none;

}

#menu li.submenu ul {

 margin: 0;

 padding: 3px;

 background: white;

}

#menu li.submenu ul li {

 padding: 5px 10px 5px 15px;

 width: 150px;

}

#menu li.submenu ul li:hover {

 background: #5F76A3;

}

#menu li.submenu ul li:hover a {

 color: white;

}

#menu li.submenu ul li a {

 color: #07315b;

 font-weight: normal;

 text-align: left;

}

Pre-populating Records
This page is about how to pass parameters using the Agiloft macros in the End User Interface and how
this can be used to make hotlinks that will pre-fill records. This section will be most useful to readers
with a strong web development background and JavaScript experience.

The main way to use this feature would be to provide the user different links to create different types of
tickets. For example, you could use a different link for critical tickets or for submitting to a different
department. This could also be used with a question tree to track the user responses and to submit a
ticket at the end based on those responses.

© Agiloft, 2018 12

Passing Data between Pages
To add a query string created by #ew_forward to a URL, add a question mark [?] after the macro,
followed by the parameter names and values.

Example 1: bla-bla.location.href = "#ew_forward("mytemplate")?param1=bla-
bla&...¶mN=bla-bla";

Example 2: '#ew_forward("case")?summary=I\'m lockedout&priority=Critical
&assigned_team=Admin team'

To pre-fill fields in the form created by #ew_create_record, add an ampersand [&] after the macro
followed by the parameter names and values.

Example 1: bla-bla.location.href = "#ew_create_record("mytemplate")¶m1=bla-
bla&...¶mN=bla-bla";

Example 2: #ew_create_record("case", "/eui2template/main.php" "parent")&summary=I\'m
locked out&priority=Critical&assigned_team=Admin Team

Note: In both cases, the individual parameter values do not need quotes and may have spaces. Older
browsers may not interpret the spaces correctly however. To include single or double quotes they must
be preceded by a backslash \.

For field population, use the name of the field, not the label. There is no difference in the format of the
values based on field data type—text, number, choice, and linked fields all tested the same.

Grabbing Passed Data
The next step is to take the query parameters we have just passed with #ew_forward and include them
in the #ew_create_record on our new page. This is the tricky part and can be done with either
JavaScript or standard Velocity macros.

Here is the usual block that holds the new record form:

 <td class="main-block" id="main_frame">

 <iframe src='#ew_create_record("case" "/eui2template/main.php"

"parent")&summary=fail' name="content_frame" id="frameres" width="100%"

height="100%" frameborder="0"></iframe>

 </td>

Notice that the #ew_create_record macro is in the SRC attribute for the iframe and that the frame
itself is in a table cell with the ID of "main_frame.” This is the standard setup. Yours may vary.

Since the macro is expanded before the page is actually loaded, in order to add in our extra parameters
passed to the page we either have to use other macros or replace the entire iframe with JavaScript. If
you are pre-populating only fixed values or data from other macros (such as the user login) then the
JavaScript will not be needed.

Using JavaScript

We are going to use JavaScript to redraw the entire iframe containing the #ew_create_record macro.
First, comment out the existing iframe in your HTML: <!-- commented part here -->

© Agiloft, 2018 13

Now, without JavasSript, nothing will be displayed on the page. In case the user does not have JavaScript
enabled you may want to add text outside of the comments but within the table cell like "You must have
JavaScript enabled to submit a new record." If our JavaScript is working, we will overwrite that text.

Next, in the head section of the page, add the following:

<script language="javascript">

function fillForm()

{

 var frameTag='<iframe src=\'#ew_create_record("case"

"/eui2template/main.php" "parent")&' + window.location.search.substring(1) +

'\' name="content_frame" id="frameres" width="100%" height="100%"

frameborder="0"></iframe>'

 document.getElementById("main_frame").innerHTML=frameTag

}

</script>

This example is for the support case (Case) table. Change the #ew_create_record macro part as
appropriate for your configuration. Note the highlighted portions. That is where we are adding in the
query parameters that have been passed to the page. In this setup we are grabbing all of the parameters
exactly as passed. Also note the getElementByID("main_frame"). If your table cell, or whatever HTML
element was containing the iframe, has a different ID, you will need to use that.

Finally, add a call to the fillForm() function to the onload event in the body tag of the page. The
standard configuration looks like:

Change it to <body onload="fillForm();menuChange();" id="main_table_top">.

That should be all that is needed for the basic setup. You may now use #ew_forward URLs as described
in the top part to pass parameters to auto-fill your forms. What if you don't want to grab all of the
parameters? A second JavaScript function can be added to parse the query string and grab only the
requested part:

function qs(search_for)

{

 var query = window.location.search.substring(1);

 var parms = query.split('&');

 for (var i=0; i<parms.length; i++) {

 var pos = parms[i].indexOf('=');

 if (pos > 0 && search_for == parms[i].substring(0,pos)) {

 return parms[i].substring(pos+1);;

 }

 }

 return "";

}

<body onload="menuChange();" id="main_table_top">

© Agiloft, 2018 14

Referencing this function, we could change our fillForm() function to say:

function fillForm()

{

 var frameTag='<iframe src=\'#ew_create_record("case"

"/eui2template/main.php" "parent")&summary=' + qs("summary") + '&priority=' +

qs("priority") + '\' name="content_frame" id="frameres" width="100%"

height="100%" frameborder="0"></iframe>'

 document.getElementById("main_frame").innerHTML=frameTag

}

Notice that now we need to call out each parameter we want specifically with a call to our new function.
It will check to see if a parameter has been passed with the given name and return the value (or blank if
the parameter is not found).

This could be useful if the parameters are being passed with incorrect names (not the proper field
name) or if you only want to use select parts of the query string.

Using Standard Velocity Macros

Instead of using JavaScript to replace the entire iframe, we can use other Velocity macros to grab the
parameters and fill them in immediately.

Velocity allows you to retrieve desired parameters from the URL by using:

Note that the parameter must be named in this case. In the example from above:

The name of the parameter is "brand" and the value is "cs". Once the value of a parameter has been
retrieved, it can be placed into a new variable by using:

Example: #set ($brand = $request.getParameter("brand"))

This retrieves the value of the "brand" parameter and assigns it to the new variable $brand. This new
variable can now be referenced anywhere in the page, including in ew_macros.

Example: <h1>Your brand is $brand </h1>

Note: This approach requires assigning each parameter to a separate variable. There is likely a Velocity
macro for pulling in the entire parameter string if more than one parameter is expected but the
parameters do not need to be handled separately.

If one of these variables is mixed with standard text, then the name of the variable should be
surrounded by brackets.

Example: ${brand}_otherText

If the variable is being used in an ew_macro which normally encloses the values in quotes, then the
variable should also be included within the quotes.

Example: #ew_include("${brand}_header.htm")

$request.getParameter("parameter")

#ew_forward("newsupport_case.htm")?brand=cs

#set($new_var = …)

© Agiloft, 2018 15

By using these parameters in the existing ew_macros it greatly extends the ability to customize the
behavior of the macros based on the page the user has come from.

Example: #ew_create_record("case" "/eui2template/${brand}_main.php" "parent")

The above macro lets the user create a support case and then forwards them to a different home page
based on the brand parameter.

For one customer this is being used to create differently branded pages—the links from the initial home
page set the brand parameter, which is then used in all of the #ew_include and other macros on the
other pages.

Macros Reference

#ew_chat

Forms URL for opening chat $sessionHash, which is obtained from the Chat wizard for the current user.
Login will be used as nickname by default. To locate the correct session hash parameter, access Setup >
Chat > [Select configuration]. On the General tab, make sure the option “Web page outside the
program” is selected. Click Next, then navigate to the HTML tab. The $sessionHash value can be found
in the generated URL.

#ew_create_record

Creates a URL that links to the standard Agiloft record creation functionality.

Parameter Description

$subtypeName Logical name of subtype to be created, as displayed in the table wizard. May contain
chains like case.question, contact.employee, etc.

$returnURL URL to return to after the ticket is created or ticket creation is cancelled.

$returnFrame Name of the <iframe> to apply $returnURL. If it contains chains such as
top.frame1.frame2…, then applied to opener window.

#ew_chat($sessionHash)

#ew_create_record($subtypeName $returnURL $returnFrame)

© Agiloft, 2018 16

#ew_edit_record

Creates URL which links to the standard Agiloft record modifying screen. Parameters are identical to
those used in #ew_create_record, except the additional parameter $recordId is used to enable
editing.

Parameter Description

$subtypeName Logical name of the table in which the record should be edited.

$recordId The ID of the record to edit.

$returnURL URL to return to after the ticket is created or cancel is pressed

$returnFrame
Name of the iframe that contains the view of the table that needs to be refreshed
once the operation is completed.

#ew_faq

Prints URL of the standard FAQ page for the given subtype (i.e. the logical table name of the FAQ type).
To configure end user FAQs navigate to Setup > End-User Interface > Setup FAQs.

#ew_forward

Creates a URL to forward the user to the specified Agiloft template. The user will remain logged in.

Parameter Description

$templateName

Template name.

If specified template does not exist, using this URL will result in an error, allowing the
designer to understand, debug and fix errors.

Example: FAQ

#ew_image

Creates URL to the image with the given name. You can upload images to your KB via staff interface
(logged in as admin) in the Look and Feel section.

#ew_edit_record($subtypeName $recordId $returnURL $returnFrame)

#ew_faq($subtypeName)

#ew_forward($templateName)

#ew_image($imageName)

© Agiloft, 2018 17

#ew_include

Parameter Description

$templateName
Includes $templateName in the current page. Allows the admin to reuse common
pieces of code from different templates.

#ew_languages

Returns a list of available languages for the current user with a particular HTML style. We need to pass
the style as a parameter, because Agiloft will render the HTML control automatically, without the ability
to insert a customer’s HTML code inside.

Parameter Description

$controlName Required name of the HTML select list.

$onChange JavaScript code to be run when a language is selected.

$controlStyle CSS class name for the select list control.

#ew_languages_all

Returns a list of all languages available in the system with a particular HTML style. We need to pass the
style as a parameter, because Agiloft will render the HTML control automatically, without the ability to
insert a customer’s HTML code inside.

Parameter Description

$controlName Required name of the HTML select list.

$onChange JavaScript code to be run when a language is selected.

$controlStyle CSS class name for the select list control.

#ew_locale

Sets the specified/passed locale (language) for the current user and session if the language is available.

Parameter Description

$localeName ISO-639 language code ("en", "de", "fr")

#ew_include($templateName)

#ew_languages($controlName $onChange $controlStyle)

#ew_languages_all($controlName $onChange $controlStyle)

#ew_locale($localeName)

© Agiloft, 2018 18

#ew_login

Prints Agiloft login URL. This tag must be enclosed in <form> with input controls «login», «password»
inside.

Parameter Description

$kbName Name of KB for login

$redirectTo Name of template to be used after successful login

Note: If no user and login is passed, the system will attempt to login under predefined user eui2/qwerty.
Create this user in your KB to use this default.

#ew_logout

Logs out of Agiloft and redirects the user to the specified URL.

Parameter Description

$url URL for redirect after logout

Example: Click to logout

#ew_menu_homepage

Parameter Description

$menuName
Unique name for menu control. If empty value is passed, default “homeMenu” will be
used.

$onChange
JavaScript function to be called on menu item selection. This method will pass single
parameter page ID. If empty, default is used.

$target
Name of the frame where selected home page should be loaded when using default
onChange processor.

#ew_login($kbName $redirectTo)

#ew_logout($url)

#ew_menu_homepage($menuName $onChange $target)

© Agiloft, 2018 19

#ew_menu_languages

Draws standard Agiloft drop-down menu with languages available to the user.

Parameter Description

$menuName
Unique name for menu control. If empty value is passed, default “langMenu” will be
used.

$onChange
JavaScript function to be called on menu item select. This function will be passed with
single parameter, selected locale value (see #ew_locale).

$target Name of target frame where to execute default onChange. Default value is “self”.

$showCurrent …if to show currently selected language with meu icon. Default value is “true”.

#ew_new_search
#ew_new_search($subtypeName $frameName $allowSaving $returnURL $params)

Provides a piece of JavaScript to run the Saved Search wizard (mostly for use in onClick event handlers).

Parameter Description

$subtypeName Table for which the search will be created

$frameName
The name of HTML iframe in which to display the results after the Wizard has
finished.

$allowSaving "true" if the user will be allowed to save the created search, otherwise "false".

$returnURL
URL to be applied to $frameName after wizard has finished. If "", then the standard
table search will be used.

$params

Visualization Parameters formed as a request query, e.g.
"showstatus=false&showpages=false..." etc. They will be applied to the table view for
$subtypeName.

Use this parameter if you leave $returnURL empty. Otherwise, add required
parameters to $returnURL directly.

Note: #ew_create_search($subtypeName $frameName $allowSaving $returnURL) is deprecated.

#ew_menu_languages($menuName $onChange $target $showCurrent)

© Agiloft, 2018 20

#ew_query

Provides a piece of JavaScript (mostly for use in onClick/onChange event handlers) that runs a search for
a table in an iframe.

Parameter Description

$subtypeName Table to display

$frameName The name of HTML iframe in which to display the results.

$controlId The ID of the HTML control that contains the query to use (for example, a form field).

$params
String of request Parameters that will be passed to the table in $frameName (see the
#ew_table macro, and the parameter list for details).

Note: #ew_execute_search($subtypeName $frameName $controlId) is deprecated.

#ew_recordfield

Prints the record field value.

Parameter Description

$fieldName Name of field to retrieve.

$tableName Logical table name.

$selector ID of the record to retrieve.

Note: Rendered to be human-friendly. That is, choice will be returned as “Yes.”

#ew_repchart

Forms the URL to show the Report/Chart with the given name.

Parameter Description

$repchartName Title (name) of report/chart as shown in list of reports and charts.

$repchartType

Allowed values:

html (displays report); image (displays graphic chart); excel (downloads Excel file
containing report data); plain/text

$tableName Logical name of the table the report/chart belongs to.

#ew_query($subtypeName $frameName $controlId $params)

#ew_recordfield($fieldName $tableName $selector)

#ew_repchart($repchartName $repchartType $tableName)

© Agiloft, 2018 21

#ew_scripts
#ew_scripts()

Introduces a link to required Agiloft JavaScript functions. This macro takes no parameters.

Note: Use #ew_scripts() within a page's HEAD section if you are getting JavaScript errors about null
and undefined objects when using other Portal templates.

#ew_searches_list

Draws an HTML select list control with Saved Searches available, based on user access permissions.

Parameter Description

$subtypeName Name of the table for which to display the appropriate searches.

$frameName
Name of the iframe that contains the view of the table that needs to be refreshed
once a search is selected.

$controlName Required name of the HTML select list.

$controlStyle CSS class name to be applied to the select list.

$params
String of the request Parameters that will be passed to the table in $frameName
(see the #ew_table macro, and the following parameter list for details).

$selectedSearch Name of the search to be selected in list initially

Note: #ew_searches($subtypeName $frameName $controlName $controlStyle) is deprecated.

#ew_session

Prints Agiloft session ID to screen. This may be used to 'manually' construct a URL that contains the
session information.

results in:

#ew_status

Prints last operation status stored in the request (ActionStatuses)

#ew_searches_list($subtypeName $frameName $controlName $controlStyle $params
$selectedSearch)

#ew_session()

Contacts

<a href="/gui2/eui2template/testContacts.htm;jsessionid=D7988DF0E8E173...

#ew_status()

© Agiloft, 2018 22

Note: This is normally used with #ew_table to show the status message associated with the displayed
table results.

#ew_table

Draws an HTML iframe and displays the specified Agiloft table.

Parameter Description

$subtypeName Table to display.

$viewName
View to apply to table.

Note: Views are localized, so different names should be used for different languages

$searchName
Name of desired search to apply to table. May be used simultaneously with
$queryString

$queryString The query to be applied to the table.

$params

Visualization Parameters formed as a request query, e.g.
showstatus=false&showpages=false... Use parameters for precise tuning of the
table's display features. See the Visualization Parameters ($params) section at the
end of this document for more details.

$frameName

The required name of the resulting iframe. This is needed so that you can refer to it in
other macros or JavaScripts, such as to refresh the table view after a search has been
applied.

$frameStyle Style to be applied to the iframe (CSS class name).

Example: #ew_table(“case” “ ” “My_Cases” “ “ “showToolBar=false” “my_table” “ “)

#ew_url

Prints $url with application prefix and session data encoded.

Parameter Description

$url

If you want to make an asset for your portal page available for portal users but not to
anyone else (for example, an image logo), you can upload it to the Agiloft server.
Then, use this macro to construct a URL, including session information, to retrieve the
uploaded asset.

Example:

#ew_table($subtypeName $viewName $searchName $queryString $params $frameName $frameStyle)

#ew_url($url)

© Agiloft, 2018 23

#ew_url_nosession

Prints $url with application prefix.

#ew_user

Prints current user login. This macro does not take parameters.

#ew_userfield

Prints current user's record field value.

Parameter Description

$fieldName
A logical name of the field to return.

Example: #ew_userfield("_16_company_name0")

Note: It is rendered to be human-friendly. That is, choice will be returned as “Yes.”

#ew_userid()

Prints current user ID.

#ew_view_record

Creates URL which links to the standard Agiloft record viewing screen. Parameters are identical to those
used in #ew_create_record, with the additional parameter $recordId.

Parameter Description

$subtypeName Logical name of the table in which the record should be viewed.

$recordId The ID of the record to view.

$returnURL URL to return to after the ticket is created or cancel is pressed

$returnFrame
Name of the iframe that contains the view of the table that needs to be refreshed
once the operation is completed.

#ew_url_nosession($url)

#ew_user()

#ew_userfield($fieldName)

#ew_userid()

#ew_view_record($subtypeName $recordId $returnURL $returnFrame)

© Agiloft, 2018 24

Additional Tools

Visualization Parameters ($params)
The following list of visualization parameters can be applied to these macros:

#ew_table; #ew_searches_list; #ew_query; and #ew_new_search

Parameter Values

(default in
brackets)

Description

showSearchCriteria [true], false Whether used search criteria will be shown to user

workWithPopUp
true, [false] Determines whether edit and new operations should be

performed within the current frame or the pop-up window

showToolBar [true], false Show toolbar on top of table with edit, delete, etc.

showNavigation [true], false Show pages navigation above the table

showStatus [true], false Show status of operations on above the table

Showfastsearch [true], false Show search dialog for the table

User related tools

$ewUser
In a template, one can use $ewUser tool macros with several methods:

Macro Description

$ewUser.isInGroup($gr_name)

Returns true if current user belongs to any of pointed
groups. False otherwise.

gr_name - names of groups separated by comma

Example: #if ($ewUser.isInGroup("Staff,admin"))
This is text for permitted users only. #else This is text for
all other users. #end

© Agiloft, 2018 25

$ewUser.isInTeam($tm_name)

Returns true if current user belongs to any of specified
teams. False otherwise.

tm_name - names of teams separated by comma

$ewUser.getCurrentUserLogin() Returns login name of the current user

$ewUser.getCurrentUserField($field)

Returns string with the field value from the current user
contact.

field - name of the contact field

Example: Welcome
$ewUser.getCurrentUserField("full_name")!

$ewPermission

The $ewPermission macro describes permission actions for individual users or groups. To add more

than one action type, separate each phrase with a comma.

Example: $ewPermission.table("create", "delete_others")

Action Description

Record Permissions

“create” Allow user to create a new record

"delete_own" Allow user to delete own records

“delete_others” Allow user to delete others’ records

"mass_delete" Allow user to delete multiple records

"dele_oth_if_pub_y" Delete others’ records if published field is yes

"massedit" Allow user to perform mass edit

"import_multiple" Allows import of multiple records from a file

"export_multiple" Allows export of multiple records to a file

"link_multiple_recs" Link multiple records using the Link menu

"print_recs" Print records using the printer icon

 View and Edit Permissions

"view_own" Allow user to view own records

“view_others” Allow user to view others’ records

"view_own_if_pub_y" View own records if published field is yes.

© Agiloft, 2018 26

"view_oth_if_pub_y" View others’ records if published field is yes.

“edit_own” Allow user to edit own records

"edit_others" Allow user to edit others’ records

Saved Search Permissions

"mod_own_s_searches" Allow user to modify/delete saved searches that they created

"mod_all_s_searches" Allow user to modify/delete all saved searches

"mod_own_s_views" Allow user to modify/delete saved views that they created

"mod_all_s_views" Allow user to modify/delete all saved views

"mod_own_s_reports" Allow user to modify/delete saved reports that they created

"mod_all_s_reports" Allow user to modify/delete all saved reports

"pub_s_reports" Allow user to publish saved reports

"v_own_with_ssearch" View own entries that satisfy the saved search

"v_oth_with_ssearch" View others’ entries that satisfy the saved search

"e_own_with_ssearch" Edit own entries that satisfy the saved search

"e_oth_with_ssearch" Edit others’ entries that satisfy the saved search

"d_oth_with_ssearch", delete others’ entries that satisfy the saved search

"acc_oth_ss" Allow access to others’ saved searches

"acc_oth_ss_py" Allow access to others’ saved searches if Published=Yes

FAQ Permissions

"view_faq" Allow user to view FAQs

"view_faq_with_ss" View FAQs that satisfy the saved search

Table Permissions

"ed_rec_tab_view" Edit records from table view

"omit_table_label" Allow user to set show label on view/editing on General tab

"copy_recs" Copy $table-label-plural

"show_in_main_tabs" Allow user to see it in main tabs

"allow_sel_ed_flds" Allow user to select editable fields in view they can edit

"apply_to_subtabls" Apply changes to subtables (in groups wizard)

© Agiloft, 2018 27

"apply_all_to_subtabls" Apply everything to subtables (in groups wizard)

Custom Report Permissions

"acc_oth_rp", Allow access to others’ custom reports

"acc_oth_rp_py" Allow access to others’ custom reports if Published=Yes

"can_be_assigned" The subtype object can be assigned to the group

Calendar Permissions

"create_calendar" Create calendar records on specific subtype

"c_cal_with_ssearch" Create calendars on records that satisfy the saved search

"view_own_calendar" View own calendar entries

"v_own_cal_with_ssearch" View own entries that satisfy the saved search

"view_others_calendar" View other peoples’ calendar entries

”others_cal_with_ssearch" View other peoples’ entries that satisfy the saved search

"edit_own_calendar" Edit own calendar entries

"e_own_cal_with_ssearch" Edit own entries that satisfy the saved search

"edit_others_calendar" Edit other peoples’ calendar entries

"e_others_cal_with_ssearch" Edit other peoples’ entries that satisfy the saved search

"delete_own_calendar" Delete own calendar entries

"d_own_cal_with_ssearch" Delete own entries that satisfy the saved search

"delete_others_calendar" Delete other peoples’ calendar entries

"d_others_cal_with_ssearch" Delete other peoples’ entries that satisfy the saved search

Email Permissions

"view_comm_from" View outgoing email address FROM

"edit_comm_from", Edit outgoing email address FROM

"view_comm_replyto", View send-back email address REPLY-TO

"edit_comm_replyto", Edit send-back email address REPLY-TO

"create_comm", Create a communication record linked to the given subtype

Email Template Permissions

"mod_own_eml_tmpl" Allow users to modify/delete own email templates

© Agiloft, 2018 28

"mod_all_eml_tmpl" Allow users to modify/delete all email templates

"viewsend_own_eml_tmpl" Allow viewing/sending only their own email templates

"viewsend_ownpublished_eml_tm
pl"

Allow viewing/sending own and published email templates

"viewsend_ownpublished_eml_tm
pl"

Allow viewing/sending own and published email templates

"viewsend_all_eml_tmpl" Allow viewing/sending of all email templates

"publish_eml_tmpl" Allow user to publish email templates

Print Template Permissions

"cr_mod_own_ptmpl" Create/modify own print templates

"cr_mod_all_ptmpl" Create/modify all print templates

"use_all_ptmpl" Use all print templates

"use_ownpub_ptmpl" Use/own/publish print templates

"can_pub_ptmpl" User can publish print templates

Response related tools
You can use the $ewResponse tool, with several useful methods, in a template:

Macro Description

$ewResponse.nocache() Set response header not to cache the template

$ewResponse.cache(time) Set response header to cache content for time minutes

Localization related tools
You can design templates with national languages support. The text displayed to users can be
maintained in separate language-based templates and displayed based on the locale. There are
predefined templates with names such as translation.properties that contain localized text in the
form

key1=value1

key2=value2

key3=value3

…

© Agiloft, 2018 29

If you want to translate your templates to, say, French, you must create a template named
translation_fr.properties and insert your translations there. If a key is not found in the localized
properties template, then the text from the default translation.properties is used.

Macro Description

$ewText.get($key)

Reads the current session locale, then looks up the key
line in the corresponding translation.properties
file and prints the text value to the screen.

Example: Welcome To
$ewText.get("home.sc.title")!

$ewText.get(key) Returns localized message

$ewText.get(key, [value1,
value2,...])

Returns localized message with values substituted

Note: Once you have logged in, the properties are cached by the application, so after changes are made
in one of the *.properties file you must reset system cache via admin console to see the changes.

